Effect of MgF₂ and Al₂O₃ supports on the structure and catalytic activity of copper–manganese oxide catalysts

J. Haber, M. Wojciechowska, b, M. Zieliński, and W. Przystajko b

^aInstitute of Catalysis and Surface Chemistry PAS, Niezapominajek 1, 30-239 Kraków, Poland ^bFaculty of Chemistry, A. Mickiewicz University, Grunwaldzka 6, 60-780 Poznań, Poland

Received 29 September 2006; accepted 15 November 2006

Structure and catalytic activity of double copper–manganese oxide catalysts supported on MgF_2 and Al_2O_3 have been studied. All samples were calcined at 400 °C and those supported on Al_2O_3 also at 550 and 950 °C. The properties of surface species have been characterized by low temperature adsorption of nitrogen, XRD and TPR-H₂. The catalytic activities have been tested in low-temperature CO oxidation and in NO reduction by propene. The supported oxides react with each other during calcination to form $CuMn_2O_4$ spinel. The spinel seems to be responsible for the catalytic activity of the double copper–manganese catalysts. The temperature of calcination changes the strength of interaction between the active phase and the supports influencing the catalytic activity.

KEY WORDS: copper-manganese oxide catalysts; CO oxidation; NO reduction; TPR; XRD; MgF₂; Al₂O₃.

1. Introduction

Transition metal oxides have been widely used as catalysts of oxidation and dehydrogenation processes. They are usually deposited on supports whose role is to increase their effectiveness. The most often applied active phases include copper and manganese oxides, usually supported on Al₂O₃ [1–6], SiO₂ [7–9], TiO₂ [9, 10] or ZrO₂ [11, 12]. The support influences the surface structure of the active phase complexes taking part in the catalytic process, so the proper choice of the support is of great importance.

A very interesting although little known support is magnesium fluoride [13]. It has almost chemically inert surface, good thermal stability up to $\sim 500^{\circ}$ C [14] and high hardness. Its surface of mesoporous structure is relatively large ($\sim 45 \text{ m}^2 \text{ g}^{-1}$). Earlier studies on transition oxides and metallic active phases supported on MgF₂ have provided active and selective catalysts in thiophene hydrodesulfurisation [15, 16], hydrodechlorination of chloro-fluoro-hydrocarbons [17, 18], reduction of NO [19] and oxidation of CO.

The present study has been undertaken to examine the performance of mixed copper–manganese oxide systems supported on MgF₂. According to the preliminary results [20], the Cu–Mn–O/MgF₂ catalysts show high activity in the reaction of NO reduction with propene. However, the lack of detail characterisation of the system studied has prompted us to make an attempt at determination of the

*To whom correspondence should be addressed. E-mail: emawoj@amu.edu.pl structure of such catalyst surface as a function of the concentration of the active phases, and at identification of the type of complexes responsible for the reactions of CO oxidation and NO reduction with propene. For comparison, analogous systems supported on $Al_2O_3 - a$ commonly used support – have also been tested.

2. Experimental

2.1. Preparation of catalysts

Magnesium fluoride was obtained in the reaction of aqueous solutions of magnesium carbonate and 20% hydrofluoric acid. After drying at 105 °C the support was calcined for 4 h at 400 °C [21]. Aluminium oxide was prepared by hydrolysis of aluminium isopropoxide according to an earlier described procedure [22]. The obtained aluminium hydroxide washed out of isopropyl alcohol, was dried at 110 °C for 24 h, then calcined at 400, 550 or at 950 °C for 4 h.

The obtained magnesium fluoride of the mesh size 0.2--0.5 mm was impregnated with $\text{Cu(NO}_3)_2\cdot 3\text{H}_2\text{O}$ dissolved in H_2O . The appropriate amount of copper nitrate was added to obtain 2 wt% Cu content. The water was evaporated on continuous stirring and then the solid was dried at 105 °C for 24 h. Finally, it was calcined at 400 °C for 4 h. The sample was labelled as $\text{Cu}_2/\text{F-4}$, where "2" is the wt% copper content in and 4 means the calcination temperature 400 °C.

 MnO_x/MgF_2 were obtained in a similar way as the copper catalyst, with manganese introduced from the

aqueous solution of Mn(CH₃COO)₂·4H₂O to get 2, 4 and 8 wt% content of manganese. The samples were labelled as Mn_x/F-4, where "x" stands for the content of Mn in wt%, while 4-indicates the calcination temperature (400 °C).

Copper and manganese oxides were supported on Al_2O_3 in the same way as on MgF₂. The samples were calcined at 400 or 550 or 950°C for 4 h and were labelled as Cu_2/A -T or Mn_x/A-T, where "2" is wt% the content of copper, "x" is wt% the content of manganese, while T is the temperature of calcination (400, 550, 950 °C).

The co-impregnated catalysts CuO–MnO/MgF₂ and CuO–MnO/Al₂O₃ were obtained by introduction of calcined magnesium fluoride or aluminium oxide of the mesh size 0.2–0.5 mm to aqueous solutions of a mixture of Cu(NO₃)₂·3H₂O and Mn(CH₃COO)₂·4H₂O. The water was evaporated, and the solids were dried and calcined in the same way as monoxide catalysts. The amounts of copper (II) nitrate and manganese (II) acetate were chosen to obtain the desired weight proportions of Cu/Mn of 1/1, 1/2, 1/4. The samples were labelled as Cu₂Mn_x/F-4 and Cu₂Mn_x/A-T, where "2" is the wt% content of Cu, and "x" is the wt% content of Mn, while "T" is the temperature of calcination (400, 550 or 950 °C).

2.2. UV-VIS spectra

The contents of metals in the catalysts were determined by the UV–VIS spectrometry. The content of copper was determined using the reaction of Cu(II) with sodium dietyldithiocarbamate at pH ranging from 4 to 11. Absorbency was measured at 436 nm. The content of manganese was determined using the reaction of manganese ions with 1-(2-pyridylazo)-2-naphtholo (PAN) at pH ranging from 8 to 10. Absorbency was measured at 564 nm.

2.3. Surface area

Low temperature (-196 °C) adsorption of nitrogen was performed by a ASAP 2010 Micromeritics sorptometer. Specific surface area was determined using the BET method and the pore size distribution was evaluated on the basis of the BJH method, using a desorption isotherm.

2.4. XRD spectra

X-ray examination was carried out with an M-62 diffractometer working with a HZG-3 powder goniometer employing Cu K α radiation with a Ni filter. The 2 Θ range of measurement was 20–70 $^{\circ}$ and step size 0.01 $^{\circ}$.

2.5. TPR-H₂

The temperature programmed reduction experiments were carried out with an ASAP ChemiSorb 2705 (Micromeritics). Portions of 100 mg of the catalyst or

15–20 mg of unsupported oxides were reduced in a mixture of 10 vol. % H_2 in Ar (99.999%) at a flow rate of 30 cm³ min⁻¹, and at 10°C min⁻¹ heating rate up to a final temperature of 800 °C.

2.6. CO oxidation

The catalyst activity in the oxidation of CO was tested in a flow reactor placed in a thermostat bath after 15 min on stream. The conditions of the catalytic tests were as follows: 30 °C, catalyst weight -0.1 g, reaction mixture: 15 ml min⁻¹ of 1% vol. CO in helium and 55 ml min⁻¹ of air. Reaction products were analysed using a Carlo Erba 6000 gas chromatograph equipped with a RT-Msieve 13X PLOT column (30 m) and a TCD detector.

2.7. NO reduction

Reduction of NO was carried out by propene in the presence of oxygen in a flow reactor at 370 °C. The flow rate of the reaction gases (NO of purity \geq 99.999%), C_3H_6 (\geq 99%) and O_2 (\geq 99.999%) diluted in helium (\geq 99.999%)) was 35 ml min⁻¹ (GHSV = 21000 h⁻¹), and the content of individual components was selected to provide a desired proportion of NO and O_2 . The proportion of NO/ O_2 has changed from 0,4 for R < 1 to 0,05 for R > 1. The paper presents the activities of the catalysts after 2 h on stream determined at different values of the R coefficient corresponding to the reducing R < 1, stoichiometric R = 1, and oxidising R > 1 conditions. This coefficient was calculated from the formula given by Tanaka et al. [23]:

$$R = \frac{[\text{NO}] + 2[\text{O}_2]}{9[\text{C}_3\text{H}_6]}$$

The reaction products were subjected to chromatographic analysis using liquid nitrogen cold trap to separated N_2 from nitric oxides. The products were analysed using Carlo Erba 6000 GC equipped with 2 m long column filled with 13 X molecular sieves (2/3) and chromosorb 104 (1/3).

3. Results

3.1. Low-temperature N_2 adsorption

The characterization of catalysts supported on MgF_2 is given in Table 1. The concentration of copper oxide in the catalysts was constant of 2 wt% of Cu, while the concentration of manganese oxides was \sim 2, 4 or 8 wt% Mn. Introduction of copper–manganese active phases on MgF_2 resulted in a decrease of its surface area and pore volume, while the mean pore diameter increased. The loading of 2 wt% of Mn reduced the surface area by \sim 9%, while the loading of 4 and 8 wt% reduced the surface area by almost 1/3. The behaviour of the catalysts supported on Al_2O_3 was different. The CuMn

 $Table\ 1$ Characterisation of copper–manganese catalysts supported on MgF_2 or Al_2O_3

. <u></u>						
Catalysts	Calcination temperature (°C)	Content of active phase (wt%)		Average pore diameter (Å)	Pore volume (cm ³ g ⁻¹)	Surface area (m ² g ⁻¹)
		Cu	Mn			
F-4	400	0.00	0.00	154	0.21	42
$Cu_2Mn_2/F-4$	400	1.92	1.84	213	0.20	38
$Cu_2Mn_4/F-4$	400	1.88	3.83	206	0.19	29
$Cu_2Mn_8/F-4$	400	1.95	7.75	199	0.15	29
A-4	400	0.00	0.00	45	0.41	270
$Cu_2Mn_2/A-4$	400	1.78	1.83	34	0.40	253
$Cu_2Mn_4/A-4$	400	1.99	4.03	35	0.39	249
$Cu_2Mn_8/A-4$	400	1.79	7.99	36	0.37	252
A-5	550	0.00	0.00	40	0.42	205
$Cu_2Mn_2/A-5$	550	1.88	1.83	30	0.40	243
$Cu_2Mn_4/A-5$	550	1.92	3.72	29	0.40	240
$Cu_2Mn_8/A-5$	550	1.01	8.10	29	0.39	239
A-9	950	0.00	0.00	35	0.28	179
$Cu_2Mn_2/A-9$	950	2.21	2.02	32	0.20	164
$Cu_2Mn_4/A-9$	950	2.12	4.21	26	0.19	63
$Cu_2Mn_8/A-9$	950	2.23	7.88	22	0.12	12

catalysts calcined at 400 and 550 °C revealed a small decrease in the surface area, irrespective of the amounts of manganese introduced, whereas, the surface area of the catalysts calcined at 950 °C rapidly decreased with increasing content of Mn.

3.2. X-ray study

Figure 1 presents X-ray diffractograms of MgF₂, monoxide catalysts, unsupported mixture of the oxides and the catalyst Cu₂Mn₄/F-4. The unsupported mixture (Cu₂Mn₂-4) composed of copper and manganese oxides was prepared in order to identify the type of crystalline phases forming in the copper-manganese double oxide catalysts. It was obtained by mixing of copper nitrate with manganese acetate and calcination of the mixture at 400 °C. The spinel phase CuMn₂O₄ gives a peak at $2\Theta = 36^{\circ}$ [19]. The signal was observed in the diffractograms of the unsupported mixture and the catalyst Cu₂Mn₄/F-4. The same spinel structure was reported for the mixed copper manganese oxides in the form of hopcalite after calcination at 400 °C and at higher temperatures [24]. Apart from the spinel, the diffraction patterns revealed the lines characteristic of CuO and Mn₂O₃, also present in the diffractograms of the respective monoxide catalysts.

The diffraction patterns of the Cu–Mn catalysts supported on Al_2O_3 and calcined at 400 and 550 °C show exclusively the diffraction lines characteristic of the support, which indicates that after calcination at these temperatures the active phase has amorphous structure. The diffractograms taken of the samples calcined at 950 °C (Fig. 2) show the peaks assigned to CuO and the spinel CuAl₂O₄.

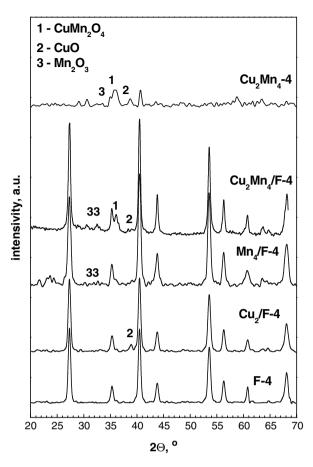


Figure 1. Diffraction patterns of the copper, manganese and copper—manganese catalysts supported on MgF_2 and of the unsupported mixture, all calcined at 400 °C.

A comparison of the diffraction patterns of the catalysts supported on MgF₂ and Al₂O₃ has shown that magnesium fluoride permits development of the crystalline phases at lower temperatures than on Al₂O₃. Moreover, on MgF₂ the copper and manganese oxides interact forming the crystallites of CuMn₂O₄ spinel whose formation has not been evidenced for the samples supported on Al₂O₃ on which the spinel CuAl₂O₄ appears.

3.3. Temperature programmed reduction H_2

Additional information on the state of the supported oxide phases has been provided by the temperature-programmed reduction with hydrogen. Fig. 3a presents the reduction profiles of the unsupported oxides mixture (Cu₂Mn₂-4) and of individual oxides supported on MgF₂. The profile of Cu₂/F-4 shows a complex reduction signal with three low-intensity maxima. Because of the changes in copper valency upon reduction, the appearance of only 2 peaks was expected, the third one can be related to the highly dispersed oxide. According to the literature data on copper oxide supported on SiO₂ [25] or ZrO₂ [26] well-dispersed CuO is much easier reducible than bulk CuO. Therefore, the first stage of

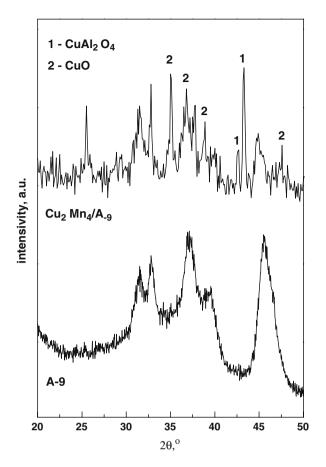
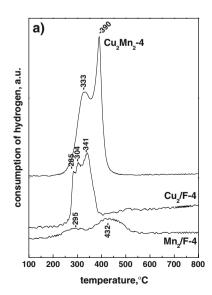



Figure 2. Diffraction patterns of Al_2O_3 and copper–manganese catalysts supported on Al_2O_3 calcined at 950 °C.

the reduction (285 °C) could be related to well-dispersed copper oxide [27]. The profile of manganese oxide shows two very broad peaks at \sim 295 and \sim 432 °C, assigned to the reduction of MnO₂ or Mn₂O₃ to Mn₃O₄, and then to MnO [28]. The profile of the unsupported mixture

reveals two maxima at 333 and 390 °C. Fig. 3b shows the reduction profiles of double oxide catalysts supported on MgF₂. The peaks in these profiles are shifted towards lower temperatures relative to those of individual phases, except for the profile of the sample with the highest content of manganese. The authors of [29] assigned this course of reduction to the spinel CuMn₂O₄. The profile of the catalyst of the lowest content of manganese (Cu₂Mn₂/F-4) shows a single peak with weak shoulders. With increasing manganese content, the peak splits into two maxima. Reduction of the excessive copper and manganese oxides, not bound in the spinel, cannot be excluded as the temperatures of their reduction are partly overlapped by the range of temperatures corresponding to the reduction of the double oxide catalyst.

Reduction profiles of the samples supported on Al₂O₃ are presented in Fig. 4. The profiles of individual copper and manganese phases after calcination at 400 °C are weak and broad with single maxima at 305 and 384 °C, respectively, Fig. 4a. The profile of the corresponding double oxide catalyst is asymmetric with maximum at 306 °C. The peaks in the profiles of the monoxide catalysts supported on the high-temperature alumina (A-9) are highly intense. The profiles of monoxide preparations calcined at 550 °C are similar and intensities of the profile signals are intermediate between those of the samples supported on Al₂O₃ and calcined at 400 or 950 °C. These differences are most probably related to the strength of the interactions between the oxides supported and the support, they are significant for the low-temperature support and small for the high-temperature one. In the binary systems the mode of interactions of the oxides supported with the support changes, which is manifested by the appearance of intense signals of reduction assigned to the

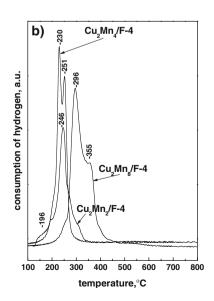


Figure 3. TPR- H_2 profiles of the unsupported mixture, monoxide catalysts (a) and double oxide catalyst (b) supported on MgF_2 and calcined at 400 °C.

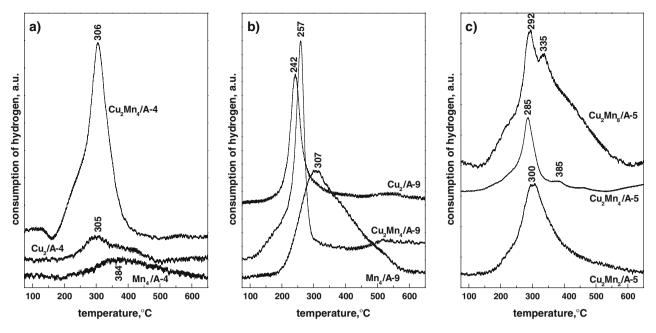


Figure 4. TPR-H₂ profiles of the monoxide catalysts and double oxide catalyst supported on Al₂O₃ and calcined at 400 °C (a) and at higher temperatures (b), (c).

phase not strongly interacting with the support. Not only copper but also manganese are in this phase as evidenced by the reduction profiles shown in Fig. 4 (the manganese phase disappears to the advantage of the joint phase in the Cu₂Mn₄/alumina catalysts) and the changes in the reduction profiles with increasing content of manganese in the catalysts calcined at 550 °C, Fig. 4c. In these catalysts only an excess of manganese leads to the appearance of the second reduction signal at 335 °C accompanied by the broadening of the profile towards higher temperatures. Most probably, the copper and manganese compound obtained as a result of a reduction to a new phase is the CuMn₂O₄ spinel, not detected by XRD because it is amorphous. A characteristic feature is that the maxima of reduction of this new phase are shifted towards lower temperatures (over ~50 °C) with increasing temperature of the support calcination reaching the same value as those of the catalysts supported on MgF₂ (~250 °C). This observation can be related to the strength of the interaction of the new phase formed on Al₂O₃-higher in the low-temperature catalysts and lower in the high-temperature ones.

3.4. Catalytic activity

The catalysts were tested in the reactions of CO oxidation and NO reduction with propene. The catalytic activity of the copper—manganese catalysts differed significantly depending on the type of the support.

In the reaction of CO oxidation particularly active among all transition metals are copper oxides. Their activity is higher than that of manganese oxides [24, 30].

In our study the most active among monoxide catalysts was the copper catalyst supported on MgF2; the CO conversion at room temperature reached 40%. The activity of CuO supported on Al₂O₃ was much lower and the conversion of CO over the most active sample Cu₂/A-9 did not reach 15%. Introduction of manganese oxide as the second component caused an increase in the catalytic activity. Fig. 5 presents the activity of double oxide catalysts. The degree of conversion depends on the type of support used and calcination temperature. The use of magnesium fluoride ensures high activity varying insignificantly with the Cu/Mn ratio. The activity of the double oxide catalysts supported on Al₃O₃ and calcined at 400 °C was much lower than that of those supported on MgF₂. The catalysts supported on Al₂O₃ calcined at higher temperatures (550 and 950 °C) showed activities comparable with that of the catalysts supported on MgF_2 .

The effect of manganese as the second component of the copper–manganese catalysts was well pronounced in the reaction of NO reduction with propene. Similarly as in CO oxidation, the mixed catalysts were more active than the monoxide ones. The most active monoxide catalyst Cu₂/F-4 gave the NO conversion reaching 60% in the reducing, almost 50% in stoichiometric and 42% in the oxidising conditions. Much less active were the monoxide catalysts supported on Al₂O₃, which provided the degree of conversion not exceeding 26%. The most active double oxide catalysts gave the NO conversion to N₂ reaching over 90%, depending on the composition of the reaction mixture (Fig. 6). In the reducing and stoichiometric conditions the most active was the double oxide catalyst supported on MgF₂. In the oxidising

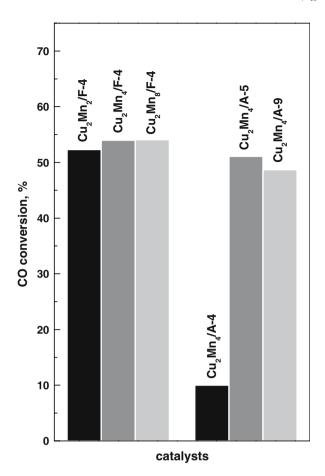


Figure 5. Activity of copper–manganese catalysts in low-temperature CO oxidation.

conditions the performance of the high-temperature Cu_2Mn_4/A -9 catalyst was even better. The activities of the double oxide catalysts supported on Al_2O_3 and calcined at lower temperatures were significantly smaller. Depending on the composition of the reaction mixture their activities changed analogously as that of Cu_2Mn_4/A -9, so they were more active in oxidising conditions. All the systems studied, irrespective of the support, were characterised by high selectivity in NO reduction to N_2 , reaching almost 100%.

The weight ratio of Cu to Mn has some effect on the activity of the systems studied. The optimum activity in the NO reduction with propene was observed at the Cu/Mn = 2/4 ratio, like it was for CO oxidation Fig. 7. For the catalysts supported on Al_2O_3 the effect of the Cu/Mn ratio was limited the degree of conversion significantly depending on the calcination temperature: the higher was this temperature the higher was the conversion.

A comparison of the double oxide copper—manganese catalysts supported on MgF_2 and Al_2O_3 in the reactions of CO oxidation and NO reduction has shown that the catalysts supported on MgF_2 were very active and their activities were even higher than that of high temperature Al_2O_3 based catalysts.

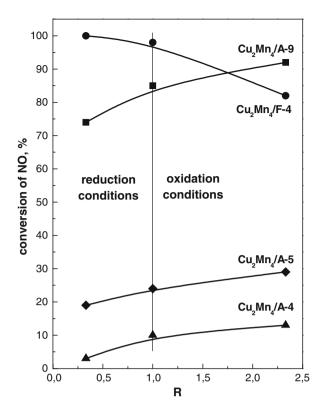


Figure 6. Activity of copper–manganese catalysts in the reaction $NO+C_3H_6$ at 370 °C for different compositions of the reaction mixture.

4. Discussion

The physicochemical properties of the copper–manganese catalysts depended on the type of the support used. MgF₂ was calcined only at 400 °C, as above this point it undergoes sintering-after calcination at 500 °C its surface area drastically decreases [31]. MgF₂ has a rutile type structure [32] with the outward layer made of fluoride anions. On the MgF₂ surface there is some number of hydroxyl groups (3–4 per nm²) [31] but twice lower than on Al₂O₃ [33]. The surface of MgF₂ is almost inert with very weak acid–base centres. The acidic centres are the coordinatively unsaturated magnesium ions, while the basic centres are OH⁻ groups and F⁻ ions.

The other support used was Al_2O_3 . In the temperature range studied (400–950 °C), this support undergoes structural changes from a mixture of γ and χ oxides in A-4 to a mixture of γ and χ with an admixture of δ and traces of α oxides in A-9 [33]. The supports have low crystallinity. The surface of Al_2O_3 has strong acid—base properties therefore, it is used as a catalyst of reactions involving acidic and basic centres. It is also used as a support of different active phases.

Four series of catalysts with the same weight proportions of Cu to Mn were prepared. Because of significant differences in the surface area of the supports used varying from 42 m² g⁻¹ for F-4 and 270 m² g⁻¹ for A-4, the surface concentration of the active phases also

varied over a wide range. The loading of MgF_2 with copper oxide was ~ 0.4 monolayer (calculated on the basis of CuO density), while the loading of Al_2O_3 varied from ~ 0.06 for A-4 to ~ 0.1 for A-9. The loading with manganese oxides (calculated on the basis of Mn_2O_3 density) varied from 0.4 to 1.8 monolayer for F-4, 0.07–0.3 for A-4, 0.07–0.3 for A-5 and 0.1–0.4 for A-9.

The systems obtained by supporting the active copper-manganese phase on MgF2 and Al2O3 revealed different catalytic properties. Particularly active were the catalysts supported on MgF2. Among the catalyst supported on Al₂O₃ only those calcined at high temperatures ensured comparable conversions. The XRD and TPR-H₂ results have shown that the copper and manganese oxides supported on MgF₂ interact with each other and not with the support, leading to formation of the spinel CuMn₂O₄. A similar situation occurs for Al₂O₃ but the difference is that the supported monoxides strongly interact with the support as indicated by the appearance of a new crystalline phase, i.e. the CuAl₂O₄ spinel, after calcination at 950 °C. The XRD data indicate that this reaction is not completed and irrespective of the calcination temperature there is still some amount of CuO. As far as manganese oxides are concerned, there is no direct evidence for the presence of crystalline manganese phases. However, a strong decrease in the surface area of the catalysts calcined at 950 °C with increasing content of manganese suggests that manganese oxides also partially react with Al₂O₃. This would be in agreement with literature data indicating the formation of the spinel MnAl₂O₄ in the reaction of manganese oxides and Al₂O₃ at ∼1000 °C [34]. The compounds formed are well-dispersed and of amorphous structure, so undetectable by the XRD method. Another explanation of the rapid decrease in the surface area of the samples calcined in high temperature is the known phenomenon of transformation of aluminium oxides into the phase α -Al₂O₃ under the effect of manganese that can take place at about 1000 °C [35]. The phase α -Al₂O₃ is characterised by a low surface area.

Analysis of the performance of the Cu/Mn catalysts supported on MgF₂ and Al₂O₃ (Fig. 7) has shown that addition of the manganese oxide affects the catalyst activity. Thus, the catalysts activity should be first of all related to the copper–manganese oxide phase [16, 36, 37]. Such a phase in the double oxide catalyst seems to be the CuMn₂O₄ spinel. As follows from the TPR-H₂ data, this spinel is present in all mixed catalysts, but the temperatures of the reduction maxima of the spinel are different for the catalysts on different supports. However, their values are close for the most active catalysts, that is the one of copper manganese oxide supported on MgF2 and on the hightemperature Al₂O₃. The samples supported on Al₂O₃ calcined at lower temperatures are the less active and their spinel phase is the most difficult to reduce, probably because of a stronger interaction with the support.

In our earlier study we have tested the effect of copper catalysts doped with cobalt oxides [38]. Therefore, we

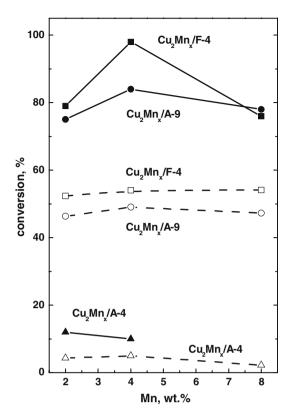


Figure 7. Conversion in the CO oxidation at 30 °C (broken line) and in the NO reduction with propene at stoichiometric conditions (solid line) versus the content of manganese.

are now able to conclude that the introduction of manganese oxides instead of cobalt oxides has resulted in obtaining more active catalysts, especially in the NO reduction with propene.

5. Conclusions

- Magnesium fluoride proved to be an interesting support for copper and manganese oxide catalysts very active in CO oxidation and NO reduction with propene.
- Copper and manganese oxides supported on MgF₂ or Al₂O₃ react during calcination giving very active CuMn₂O₄ spinel phase.
- 3. Interaction between the spinel phase and the support surface influences the catalytic activity; the weaker the interactions the higher the activity.

Acknowledgments

We acknowledge a support from the Polish Committee for Science Research (grant 3 T09A 174 28). Michał Zieliński expresses his gratitude to the Foundation of Polish Science for fellowship.

References

- P. Artizzu, E. Garbowski, M. Primet, Y. Brulle and J. Saint-Just, Catal. Today 47 (1999) 83.
- [2] K. Sun, J. Liu and N.D. Browning, Appl. Catal. B 38 (2002) 271.
- [3] Y. Fu, Y. Tian and P. Lin, J. Catal. 132 (1991) 85.
- [4] Ch. Kappenstein, L. Pirault-Roy, M. Guerin, T. Wahdan, A.A. Ali, F.A. Al.-Sagheer and M.I. Zaki, Appl. Catal. 234 (2002) 145.
- [5] M. Ferrandon, J. Carno, S. Jaras and E. Bjornborn, Appl. Catal. 180 (1999) 141.
- [6] L. Kapteijn, L. Singoredjo, M. van Driel, A. Andreini, J. Moulijn, G. Ramis and G. Busca, J. Catal. 150 (1994) 105.
- [7] W.P.A. Jansen, J. Beckers, J.C. Van der Heuvel, A.W. Denier van der Gon, A. Bliek and H.H. Brongersma, J. Catal. 210 (2002) 229.
- [8] Y. Han, J. Shen and Y. Chen, Appl. Catal. 205 (2001) 79.
- [9] Y. Liu, M. Luo, Z. Wei, Q. Xin, P. Ying and C. Li, Appl. Catal. B 29 (2001) 61.
- [10] B. Xu, L. Dong and Y. Chen, J. Chem. Soc. Faraday Trans. 94 (1998) 1905.
- [11] D. Pietrogiacomi, D. Sannino, S. Tuti, P. Ciambelli, V. Indovina, M. Occhiuzzi and F. Pepe, Appl. Catal. B 21 (1999) 141.
- [12] L.M. Gandia, M.A. Vicente and A. Gil, Appl. Catal. B 18 (2002) 295
- [13] M. Wojciechowska, M. Zieliński and M. Pietrowski, J. Fluorine Chem. 120 (2003) 1.
- [14] M. Wojciechowska, B. Czajka, M. Pietrowski and M. Zieliński, Catal. Lett. 66 (2000) 147.
- [15] M. Wojciechowska, M. Pietrowski and S. Łomnicki, J. Chem. Soc. Chem. Commun. 463 (1999).
- [16] M. Wojciechowska, M. Pietrowski and B. Czajka, Catal. Today 65 (2001) 349.
- [17] A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska and Z. Karpiński, Stud. Surf. Sci. Catal. 130 (2000) 1991.
- [18] A. Malinowski, W. Juszczyk, J. Pielaszek, M. Bonarowska, M. Wojciechowska and Z. Karpiński, J. Chem. Soc. Chem. Commun. 685 (1999).
- [19] M. Wojciechowska, J. Haber and S. Łomnicki, Arch. Environ. Protection 23 (1997) 7.

- [20] M. Wojciechowska, M. Zieliński, W. Przystajko and M. Pietrowski, Catal. Today 119 (2007) 44.
- [21] M. Wojciechowska and R. Fiedorow, J. Fluorine Chem. 15 (1980) 443.
- [22] F.S. Stone and L. Whalley, J. Catal. 8 (1967) 173.
- [23] T. Tanaka, K. Kokota, N. Isomura, H. Doi and M. Sugiura, Appl. Catal. B 16 (1998) 199.
- [24] G.J. Hutchings, A.A. Mirzaei, R.W. Joyner, M.R.H. Siddiqui and S.H. Tayler, Appl. Catal. A 166 (1998) 143.
- [25] S.D. Robertson, B.D. Menical, J.H. Debaos, S.C. Kloet and J.W. Jenkins, J. Catal. 37 (1975) 424.
- [26] C.J.G. van der Grift, A. Mulder and J.W. Seus, Appl. Catal. 60 (1990) 181.
- [27] R.X. Zhou, X.Y. Jiang, J.X. Mao and X.M. Zheng, Appl. Catal. A 162 (1997) 213.
- [28] J. Carno, M. Ferrandon, E. Bjornborm and S. Jaras, Appl. Catal. 155 (1997) 265.
- [29] F.C. Buciuman, F. Patacas and T. Chafn, Chem. Eng. Process 38 (1999) 563.
- [30] M. Ferrandon, J. Carno, S. Jaras and E. Bjornborn, Appl. Catal. 180 (1999) 141.
- [31] M. Wojciechowska, B. Czajka, M. Pietrowski and M. Zieliński, Catal. Lett. 66 (2000) 147.
- [32] W.H. Baur and A.A. Khan, Acta Crys. B 27 (1971) 2133.
- [33] Gates B.C. (1992). Catalytic Chemistry (John Willey and Sons, New York, Chichester-Brisbane-Toronto-Singapore), 325.
- [34] L.M. Gandia, M.A. Vicente and A. Gil, Appl. Catal. 196 (2000) 281.
- [35] W. M. Shaheen and K. S. Hong, Thermochim Acta 381 (2002) 153.
- [36] M. Severino, J.L. Brito, J. Lain, J.L.G. Fierro and A. López Agudo, J. Catal. 177 (1998) 82.
- [37] Y.V. Tyurkin, E.N. Luzhkova, G.N. Pirogova and L.A. Chesalov, Catal. Today 33 (1997) 191.
- [38] M. Wojciechowska, W. Przystajko and M. Zieliński, Catal. Today 119 (2007) 338.